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Slow viscous flow due to motion of an annular disk; 
pressure-driven extrusion through an annular hole 

in a wall 
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(Received 27 February 1990 and in revised form 12 October 1990) 

The description of the slow viscous flow due to the axisymmetric or asymmetric 
translation of an annular disk involves the solution of respectively one or two sets of 
triple integral equations involving Bessel functions. An efficient method is presented 
for transforming each set into a Fredholm integral equation of the second kind. 
Simple, regular kernels are obtained and the required physical constants are readily 
available. The method is also applied to the pressure-driven extrusion flow through 
an annular hole in a wall. The velocity profiles in the holes are found to be flatter than 
expected with correspondingly sharper variation near a rim. For the sideways motion 
of a disk, an exact solution is given with bounded velocities and both components of 
the rim pressure singularity minimized. The additional drag experienced by this disk 
when the fluid is bounded by walls parallel to the motion is then determined by 
solving a pair of integral equations, according to methods given in an earlier paper. 

1. Introduction 
Although the classical Stokes flow problem of the motion of an inertialess 

unbounded fluid past a single axisymmetric body has been studied for more than 100 
years, analytical solutions have been obtained only for special geometries in which 
the bodies usually correspond to a complete coordinate surface of one of the special 
orthogonal coordinate systems in which the Stokes equations are simply separable. 
The exception involving an incomplete surface is the spherical cap for which 
uniqueness was guaranteed by minimizing the stress Singularity at the rim or, 
equivalently, imposing a continuous velocity field in each of the different solutions 
given by Collins (1963) and Dorrepaal, O’Neill & Ranger (1976) for axisymmetric 
flow and in the asymmetric flow solution constructed by Dorrepaal (1976). The 
exception involving a non-convex body is the torus for which solutions were 
constructed in terms of the stream function by Payne & Pel1 (1960) and directly in 
terms of the velocity components by Majumdar & O’Neill (1977) for axisymmetric 
flow and by Goren & O’Neill (1980) for asymmetric flow. When the stream function 
is used in conjunction with toroidal coordinates, there are coordinate surfaces that 
enclose the body and the unknown flux constant must be determined by requiring 
the pressure to be continuous. However, when the stream function is the subject of 
a mixed boundary-value problem, the pressure continuity conditions ensure single- 
valuedness but the solution will in general contain terms that yield unbounded 
velocities at the rim. The need to remove such terms by adding eigenfunctions to the 
stream function was discussed by Hasimoto (1981). This strategy was further 
developed by Miyazaki & Hasimoto (1984) for the flow due to an arbitrarily placed 
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stokeslet in the presence of a hole in a wall in first finding particular solutions for the 
potential functions and then adding complementary harmonic functions to remove 
the rim singularities in the velocity fields. Similar features can occur in the 
application of the Wiener-Hopf technique. 

The Stokes drag on a flat annular ring was studied experimentally by Roger & 
Hussey (1982) who also presented a theoretical calculation using a beads-on-a-shell 
model to represent a distribution of point forces. The axisymmetric streaming flow 
past an annular disk can be solved by using a distribution of ringlets to obtain the 
same integral equation as in the corresponding electrostatic potential problem of 
Cooke (1963). Unfortunately this equation is singular a t  the inner rim and the only 
way in which the method can allow the removal of the singularity is by transferring 
it to the outer rim. Despite the consequent numerical inefficiency, both computations 
achieved good accuracy for values of the drag force. Asymptotic estimates for the 
limit in which the radii difference approaches zero were given by Spence (1970). This 
limit is of particular interest because, as described by Stewartson (1983) for the thin 
torus, the viscous fluid exhibits a marked reluctance to flow through the boundary 
and the flux function has an essential singularity in the limit in which the hollow 
boundary approaches a circle and disappears. This situation was also demonstrated 
in calculations by Price (1985) for a finite circular pipe and by Davis (1985) for a 
spherical shell with axisymmetric caps removed in which the boundary conditions 
lead to sets of triple integrals or triple series that can a t  best be reduced to integral 
equations of the second kind, not necessarily disjoint. Lasso & Weidman (1986) 
extrapolated their experimental results for finite hollow cylinders of non-zero 
thickness to show good agreement with Price’s results. 

In  considering principally the annular disk, this paper shows, in $2, that the 
singularity, encountered by earlier authors in working with the unknown pressure 
jump across the disk, can be avoided by introducing two functions that determine 
the unknown normal velocity in the complementary intervals. The triple integral 
equations, which arise from the boundary conditions, are then transformed, by 
elementary Hankel transforms, into a pair of equations that reduce to a single 
Fredholm integral equation of the second kind with a simple, bounded kernel. This 
method is considerably more efficient than that described by Sneddon (1966). No 
arbitrary constants appear here because the symmetry of the flow allows use of a 
representation in terms of a harmonic function equal to the normal velocity in the 
plane of the disk. Section 3 considers a viscous flow past the complementary 
boundary, namely the pressure-driven extrusion of fluid through an annular hole in 
a plane wall. This flow is regarded as a modification of that  described by Sampson 
(1891) for the circular hole and is determined by using distributions of ringlet 
singularities on the wall and central disk. The analysis is similar to that above and 
in both cases the dimensionless flux and drag coefficients are readily determined from 
the numerical solution of each integral equation. Moreover, the velocity profiles in 
the holes are found to exhibit an interesting feature ; they increasingly flatten, as the 
hole is enlarged, with correspondingly increased gradients near the rims, where 
square-root behaviour is exhibited. 

Asymmetric motions are studied by means of the velocity representation used by 
Ranger (1978). An exact solution is available for the disk in unbounded fluid and the 
two constants necessarily introduced are determined by requiring both tangential 
velocity components to be bounded. The velocity components and pressure are 
evaluated in terms of toroidal coordinates to obtain simple formulae similar to those 
for the shear flow disturbance due to a hole in the wall (Davis 1991b). Section 4 is 
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continued by supposing that this sideways motion of the disk occurs midway 
between parallel walls. The influence of reflected velocity fields on the tangential 
drag force is determined by a pair of integral equations obtained by the methods 
described by Davis (1990) for axisymmetric disk motions in the presence of fixed 
boundaries. Section 5 discusses the sideways motion of an annular disk in unbounded 
fluid. In this case, four constants are reduced to three determined by consistency 
conditions that arise after imposing a continuous velocity field. For a given ratio of 
radii, the tangential drag force is smaller than that obtained by Goren & O'Neill 
(1980) but its fractional variation with the radii ratio, i.e. variation of the 
dimensionless drag coefficient, is remarkably similar to that of the normal drag force 
in axisymmetric translation. 

2. The sedimenting annular disk 
A thin rigid annular disk of radii a, 1 (a < 1) translates steadily along its axis with 

speed U in incompressible viscous fluid that is at rest at  infinity. Cylindrical polar 
coordinates (p, 8, z )  are chosen so that the disk is instantaneously at  z = 0 (a < p < 
1,0 < 8 < 27c) and moving towards the half-space z > 0. The Reynolds number is 
assumed to be sufficiently small for the velocity field v to satisfy the creeping-flow 
equations 

pV2v = Qp, (2.1) 
V-V = 0, (2.2) 

where p is the coefficient of viscosity and p the dynamic pressure. The boundary 
conditions on the disk are 

vp = 0, v, = U on z = 0 (a < p  < 1). (2.3) 
For this geometry, with the flow symmetric about the plane z = 0, an appropriate 

representation of the velocity field is given by 

v = $Z"-zV$, p = -2p-, 
a Z  

where v24 = 0. 

The axisymmetric function #(p,  z )  has the form 

whence, from (2.4), the normal velocity and pressure jump are given by 

The condition vz(p, 0) = U (a < p < 1) in (2.3) and the pressure continuity 
requirement Ip]z-O = 0 for 0 < p < a and p > 1 now yield triple integral equations 

Som A(k)  J , (kp )  dk = (a < p < I), (2.9) 

(2.10) lOmkA(k)J,(kp)dk = 0 (0 < p < a,p > 1). 
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These can be solved by the methods described by Sneddon (1966, $6.2) but a simpler 
procedure for determining the physical quantities of interest is available. 

First, the Fourier transforms of Jo(kp) and the consequent identity 

9 

show that the disk condition (2.9) is satisfied by writing 

A(k) = ~- 
k o  

Meanwhile, the identities 

PJo(kP)ldp- sin ku 

enable the pressure continuity conditions (2.10) to be simplified to 

k 
dp = - 

k '  0 (U2-P2P 

r m  r m  

(2.11) 

(2.12) 

(2.13) 

the forms 

J A(k)coskudk=O (u2 l ) ,  J A(k)sinkudk=O ( u < u ) ,  
0 0 

which, on substitution of (2.12), yield 

(2.14) 

Thus F(t )  satisfies the integral equation of the second kind 

(2.15) 

The normal velocity in the hole is given, from (2.7), (2.11), and (2.12) by 

and hence the relative flux of fluid, n:UM, through the hole in the disk in the 
z-direction is determined by 

M = - F(t)dt. : I 
The drag force 16UpD exerted on the disk by the fluid is determined, from 

D = J;A(k)[J,(k)-aJ,(ka)]dk 

(2.16) 

negative 

(2.17) 

(2.8), by 

(2.18) 
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after substitution of (2.12) and (2.14). Lastly, the essential features of the relative 
velocity in the hole can be deduced by noting that, in (2.16), 

(2.19) 

and comparing the axial value with that of the Sampson profile (see (3.3)) having the 
same flux, namely 3UM (a2-p2)i/2a3, whereM is given by (2.17). Thus the quantity 

=J0 2a2 a t-zF(t) dt, 

which is convergent because the integral equation (2.15) yields 

11m- ' '@I = --- I[ 2--1n ( ' + ' ) ] w - ~ ~ ' ( w ) ~ w ,  - 
t+o t 2  n 7c2 1-v 

determines whether the relative velocity profile is flatter or more peaked than the 
elliptical profile of the flow through a hole in a wall. 

For a 4 1, the solution of (2.15) is 

2u2 2u4 
F(u) - - n [ 1 + 0 ( ~ ~ ) 1 + ~ ,  

whence substitution in (2.16), (2.17) and (2.18) shows that the normal velocity in the 
hole, the relative flux through the hole and the dimensionless drag coefficient are 
approximated by 

4 u  8U 
xUM N -a3 

7c2 3n ' 
vZ(p, 0) * U-- (a2-p2);, 

4a3 
3n2 

- 1--. 

As mentioned by Roger & Hussey (1982), this last result can be obtained by an 
application of the reciprocal theorem (Happel & Brenner 1973). The relative velocity 
and flux correspond to a Sampson flow (see (3.3)) with pressure drop SU,u/n which is, 
indeed, the axial pressure jump for the translating disk without a hole. As a increases 
from zero towards unity, the relative velocity profile departs from the Sampson 
profile but retains the important feature (2.19). 

Evidently M/a3 is an appropriate measure of flux variation while, as noted above, 
the axial velocity in the hole must be scaled with 3UM/2a2 for comparison with the 
Sampson profile. The integral equation (2.15) is easily solved numerically by a 
Chebyshev polynomial approximation as described in the Appendix. Values of 
the dimensionless flux factor M/a3 ,  drag force D and axial relative velocity 
2a2 [ 1 - U-'v,(O, 0)]/3M are listed in table 1.  As a increases towards unity, M and D 
exhibit considerable reluctance to approach their limit values while the flattening of 
the velocity profile indicates a corresponding steepening near the inner rim. This 
phenomenon arises from the need to recover the uniform stream in the limit a = 1 
and contrasts with the entrance profile for pressure-driven flow through an orifice, 
namely, the average of Sampson and Poiseuille flows having the same flux (Dagan, 
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a 

112 

415 

11/12 

991 100 

213 

516 
819 

24/25 
49/50 

€-I 

1 
2 
4 
5 
8 

11 
24 
49 
99 

M / a 3  

0.2874 
0.3064 
0.3350 
0.3459 
0.3709 
0.3890 
0.4349 
0.4762 
0.5144 

D 

0.9810 
0.9494 
0.8977 
0.8778 
0.8329 
0.8015 
0.7259 
0.6634 
0.6094 

2a2[1 - U-'v,(O, 0)]/3M 

0.9756 
0.9525 
0.9226 
0.9123 
0.8906 
0.8763 
0.8442 
0.8194 
0.7992 

TABLE 1. Values of the dimensionless flux factor M / a S ,  drag force D and relative velocity 
2a2[l - U-'v,(O, 0)]/3M for various values of inner radius a of the annular disk 

Weinbaum & Pfeffer 1982). Further evidence of this steepening of the profile near a 
rim will be presented in the next section. The computed values suggest that  the 
empirical formulae 

(2.20) 
x2 

2 In (32/s) 
as s = a - ' - l + O  M -  1- D -  

In (32/s) ' 

describe the approach of the dimensionless flux and drag to their limit values. 
Similar formulae have been obtained for related flows. For a torus with radii ratio 

S ( << 1)'  Majumdar & O'Neill (1977) and Stewartson (1983) respectively established 
the asymptotic estimates 4n/3[ln ( 8 / 6 ) + 3  for the drag coefficient and 1 -4/[ln 
(8 /6 )  ++I for the flux factor. For a finite pipe of unit radius and length b (< i) ,  Price 
(1985) obtained the empirical formulae 

(1  -M)-l - a[ln ( 8 x / b )  +a] - 47c2/D. 

In  the above analysis, equation (2.9) expresses, on substitution in (2.7), the normal 
velocity in terms of two functions F ( t ) ,  G ( t ) ,  defined on either side of the rims of the 
disk and then two equations are obtained by requiring the pressure to  be continuous 
and hence single-valued. Evidently this solution is analytically and computationally 
better than that obtained by writing the pressure jump across the disk in the form 

and requiring the normal velocity at the disk to be U. This procedure is successful for 
the complete disk (a  = 0, Davis 1990) but in the annular case yields the integral 
equation 

where 

The appearance of the singularity (u - a)-l in the kernel of this integral equation for 
S(t) t(t2-a2)--f suggests that two unknown functions are required to  take proper 
account of both rim singularities. The numerical solution of (2.21), given by Cooke 
(1963) in the context of electrostatics, is handicapped by the logarithmic singularity 
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a 

112 

415 
516 
819 
11/12 

991 100 

213 

24/25 
49/50 

6-l 

1 
2 
4 
5 
8 

11  
24 
49 
99 

D 
0.9810 
0.9494 
0.8977 
0.8778 
0.8329 
0.8015 
0.7259 
0.6634 
0.6094 

D (Cooke) 

0.9810 
0.9494 
0.8976 
0.8776 
0.8326 
0.801 1 

0.6667 
- 

- 

D (2.20) 

- 
1.017 
0.9723 
0.8899 
0.8416 
0.7428 
0.6707 
0.6122 

D (2.22) 

- 
0.8838 
0.8684 
0.8288 
0.7991 
0.7254 
0.6639 
0.6087 

TABLE 2. Comparison of computed values of D in table 1 with Cooke’s (1963) numerics and the 
asymptotic formulae (2.20) and (2.22) 

in S ( t )  at the inner rim and consequently needs many more truncation points than 
in (2.15) to achieve comparable accuracy even for the two integrals M and D. Since 
these quantities change rapidly as a + 1, Spence (1970) considered the asymptotic 
solution of (2.21) in this limit and established, by Wiener-Hopf methods, the drag 
coefficient estimate in (2.20). He then suggested, by comparison with Cooke’s results, 
that the 2 factor in this formula be replaced empirically by (2 + E )  and finally, in a 
note added in proof, gave the more accurate result 

(2.22) 

Table 2 displays, for comparison, values of D from table 1, Cooke’s numerics and the 
asymptotic formulae (2.20) and (2.22). Spence’s method has been applied by Davis 
(1991a) to annular disks moving axisymmetrically in the presence of fixed 
boundaries. These calculations were guided by a preference for integral equations of 
the second kind, for computational reasons described in detail by Karrila & Kim 
(1989). However, Leppington & Levine (1972) obtained the asymptotic formulae 
(2.20), (2.22) more directly by estimating the kernel of the corresponding integral 
equation of the first kind. Their analysis shows that the function S( t )  is similar to an 
elliptic integral. 

D - 7c2/ [ (2 + E )  In (3214 + E + O( e2 In E)] . 

3. Pressure-driven flow through an annular hole in a wall 
The pressure-driven flow through a circular hole in a wall was first described by 

Sampson (1891) and is conveniently given by Happel & Brenner (1973) in terms of 
oblate spheroidal coordinates (A ,  5) defined by 

2 = A& p = (l=A2)f(l-p)1 (3.1) 

with - co < A < co, 0 < 5 < 1. Alternatively, the appropriate function @ in the 
representation (2.4) is given (Davis 1991 b )  by 

where AP is the pressure drop that drives the flow. In particular the velocity in the 
hole is AP 

(3.3) 
2 v  

vP’(p,O) = (@‘”)A-o = -(1 -p2)$ (0 < p < 1)  

and the flux of fluid is AP/3p. 
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Consider now the extrusion of viscous fluid through an annular hole at z = 0, a < 
p < 1. If the total velocity field is denoted by d S ) - v  and the representation (2.4) is 
used for the negative perturbation to the Sampson flow due t o  the presence of a disk 
of radius a, then the modified forms of (2.7), (2.8) are 

(3.5) 

where A(k) is now to be determined by the boundary conditions v,(p, 0) = @(p, 0) for 
0 < p < a and p 3 1 and [PI,,, = 0 for a < p < 1. Evidently a set of triple integral 
equations is obtained but again a simpler procedure than the standard approach is 
available for their solution, this time by using representations of the unknown 
pressure jumps at  the disk and plane. Thus, following Davis (1990), write 

whence the inversion of (3.5) yields 

A ( k )  = rS( t )cosktd t -  0 r X(t)sinktdt. (3.7) 

Meanwhile, application of the u-derivatives of the identities (2.13) to the velocity 
conditions 

obtained by substitution of (3.3) and (3.4), shows that 

JomA(k) sin kudk = 0 (u 3 l ) ,  

A(k)coskudk = (0 < u < a). 

Then, on substitution of (3.7), these equations become 

and hence S(t)  satisfies the integral equation 

(0 < u < a). 
S(u) - 21 [ u In (=) l + u  - v In (=)I so dv = 2-Eln (E) 

x2 l - v  u2-v'2 n 7 c  
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0 0.2 0.4 0.6 0.8 1 
a 

FIQURE 1.  The dimensionless quantities M(l -a2)-: (0) and C (0 )  that measure the flux of fluid 
MWI3,u and the force 4APaC on the central fixed disk in the pressure-driven extrusion of viscous 
fluid through an annular hole of radii a, 1 in a wall. This scaling ofM facilitates its graphical display. 

Since - p  is the additional pressure due to the replacement of the circular hole by 
an annular hole in the wall, the force 4APaC exerted by the fluid on the disk is given, 
from (3.6), by 

C = - #(t)dt. 3: (3.10) 

Evidently, the functions S(t)  (0 < t < a) and X ( t )  ( t  > 1) may be identified, as in 
Davis (1990), as density functions for axisymmetric distributions of point force 
singularities on the rigid plane. 

The total normal velocity in the annular hole is given from (3.3), (3.4) and (3.7) by 

after substitution of (3.8). Hence the flux MAP13p of fluid through the annular hole 
is determined by 

Values of the dimensionless drag force C and flux factor M can be computed by 
applying the method described in the Appendix to the integral equation (3.9). The 
variations of C and M (  1 - a2)-i with a are displayed in figure 1 while velocity profiles 
in the hole, significantly different from those for flow between concentric cylinders, 

FLM 231 3 
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0 0.2 0.4 0.6 0.8 1 .o 
P 

FIQURE 2. Velocity profiles in the hole for a = 0 to 0.8 in increments of 0.1. 

are shown in figure 2 at increments of 0.1 in a. As in table 1, N = 5 is sufficient for 
convergence of the computations. 

It is of interest to consider the extreme values of a. For a < 1,  the integral equation 
(3.9) yields 

8(t) 'v ?( n 1 +$) - c (3.13) 

in which the leading term can be anticipated by observing that the small disk 
essentially sees a uniform stream with speed vp)(O, 0) = AP/2np. Substitution of this 
linear approximation for # ( t )  in (3.12) then yields the quadratic estimate 

in which the linear term can be deduced from a simple application of the reciprocal 
theorem (A. Acrivos 1990, private communication). Evidently M(a) has a point of 
inflexion ; the preferred quantity M (  1 -a2)-i corresponds to M / a 3  for the disk and 
measures, according to (3.12), the fraction of the Sampson flux that passes through 
the annulus. Also, substitution of (3.13) in (3.8) and (3.11) yields 

and hence the velocity profile 

(3.14) 

Thus, as suggested by figure 2, the deviation from the Sampson profile is O(a) except 
when p = O(a), i.e. 

lim w,(p, 0) = 0 for any p > 0. 
U*O 
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The boundary-layer behaviour causes the profile to steepen as a + 0, a phenomenon 
that tends to confirm the indicated structure of the flow through an annular disk 
when (1 -a) is small. 

For 1 --a 6 1, an approximate solution of (3.9) is unavailable but evidently C+ix  
as a + 1 because the force exerted on the disk must approach xa2A€'. For an estimate 
of M in this limit, A. Acrivos (1990, private communication) has used the method of 
Hasimoto (1958) to obtain 

(1 - a)2 [ 1 + O( 1 - a)] .  
3x2 

M - -  
16 

(3.15) 

By exploiting the similarity between the equations governing creeping flow through 
holes or slots and those for potential flow past the complementary disks or strips, 
Hasimoto showed that the flux per unit pressure drop for a slit of width 2h is xh2/8p 
per unit length. On regarding the narrow annular hole as a slit of width (1 -a) and 
length 2x, the estimate (3.15) is readily deduced. The computed values M(0.98) = 
7.239 x M(0.99) = 1.775 x indicate good agreement. 

4. Disk moving sideways between parallel walls 
A thin rigid disk of unit radius translates steadily in its own plane with speed U 

in incompressible viscous fluid that is a t  rest at infinity and possibly confined 
between parallel walls at  distance H from the plane of the disk. Cylindrical polar 
coordinates (p ,  8, z )  are chosen so that the disk is instantaneously at  z = 0 (0 < p < 
1, - x  < 8 < x )  and moving in the 8 = 0 direction. According to Ranger (1978), the 
creeping-flow equations (2.1), (2.2) can be satisfied by writing 

where the functions $(p,  z ) ,  x(p, z )  satisfy 

L!& = 0 = L-,x. 

The components of u are given by 

but it is more convenient to replace up, v8 by their Cartesian counterparts 

The boundary conditions 

v z = O ,  v z = U ,  v y = O  at z = O  ( O < p < l )  (4.5) 
3-2 
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are satisfied by choosing $ to  be an odd function of z and requiring that 

where a is a constant to be determined. 

@ is 

and then Y and x have similar forms, namely 

In the absence of the parallel walls, i.e. for infinite fluid, an appropriate form for 

@ = Z Y ,  L-, Y = 0 

Hence, from (4.6) 

(4.7) 

The tangential stress discontinuities at z = 0 are given, after substitution of (4.7) in 
(4.4), by 

O+ 2Up d 1 [a,,] ?Go- =-R d p p  
p - { - [om kJ1 (kp) ( 2A - B) dk} cos 20 I 

2 U d  
(4.9) 

Hence continuity of stresses a t  z = 0, p > 1 is achieved by imposing the conditions 

(4.10) 

where p is another undetermined constant. 
Note that i t  is essential here, because different combinations ofA(k) and B(k) occur 

in the velocity and stress conditions, to refrain from evaluating the p-derivatives in 
(4.4) and (4.9) in order to have Bessel functions of common order in (4.8) and (4.10). 
The solution is to be made unique by choosing the constants 01 and /3 so that the 
velocities are bounded at  the rim p = 1. p may be interpreted as a dimensionless drag 
coefficient by evaluating the total tangential force exerted by the fluid on the disk 
against its motion, namely 

by substitution of (4.9) and the condition (4.10). 
After rearranging (4.10) in the form 

(4.12) 

it is seen that (4.8) and (4.12) furnish two sets of dual integral equations to which the 
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formulae of Sneddon (1966, $4.3) are applicable in a manner similar to that described 
by Davis (1991 b )  for the shear flow disturbances due to a hole in the bounding wall. 
The constants a and /3 are chosen to eliminate terms of order (p2- l)-k in the velocity 
components in the plane of the disk. Here it suffices to observe that the identities 
(2.11) and 

imply that (4.12) and a derivative of (4.8), namely 

can be satisfied by setting a = /3 = 1 with 

4 sin k 
3k2 

B = U = -  

(4.13) 

(4.14) 

Thus, on substitution in (4.7) and (4.11), the drag force is 32U,u/3 and 

whose evaluation in closed form is unavailable. However, the corresponding velocity 
components determined by (4.3) have relatively simple evaluations in terms of the 
oblate spheroidal coordinates defined by (3.1) with A > 0, - 1 < 5 < 1 for the region 
external to the disk. Thus, with the pressure given by 

it follows by various manipulations of the identity 

(ReA > 0) 
[ (A2 4- p2)i - A]" 

pY(A2+p2)i 
e-kA J,(kp) d k  = 

(Gradshteyn & Ryzhik 1980, $6.611) that 

I 2u ~ 3 ( 1 + )  

37K ( A 2 + 1 )  ( A 2 + P )  
(vz, vY) = (cos 28, sin 20)- 

+ ( 1,o) 5 37c [ 3 tan-' (3 -A], 

In particular, the tangential stress discontinuities on the disk are 

(4.15) 

(4.16) 

in which the choice of the constants u and p has eliminated terms of order (1 -p2)-g. 
This was not achieved by Ranger (1978) who omitted the second Fourier component 
from (4.4) in a solution based on complementary integral representations. 
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Now consider how the above analysis should be modified to take account of rigid 
walls a t  z = +H. The total velocity field is then determined by ($--1crB) and (x-xB) 
which satisfy (4.2) with $, x constructed as in (4.7) and $B, xB determined by the no- 
slip conditions at  z = f H .  Thus 

xB = F l r p A ( k p )  C(k) cosh kzdk, 

$B = yJompA(kp) [D(k)  sinhkz+E(k)zcosh kz] dk, J 
I 

where the unknown functions are chosen so that 

Thus, by reference to (4.7), 
C cosh kH = B e-kH, 

D sinh kH + EH cosh kH = AH edkH, 

kD cosh kH +E(cosh kH + kH sinh kH) = A(  1 - kH) e-lcH 

and hence, from (4.17), 

(4.17) 

where 
e-kH 1 -2kH+2k2H2-e-2kH 

T(k)  = 
sinh 2kH - 2kH 

d(k )  = - 
cosh kH ’ 

(4.19) 

The reflected velocity field must be included in the boundary conditions (4.5) but 
does not contain any stress discontinuities. Hence, (4.8) is replaced by 

(4.20) 

Guided by the identity (4.13) and the solution (4.14) for the disk in isolation, write 
but (4.10) is retained. 

(4.21) 

Then the inversion of the Hankel transforms defined by (4.10) and (4.21) yields 

(4.22) 



Slow viscous JEow due to an annular disk 65 

4.5 

4.0 

3.5 

3.0 

2.5 

2.0 

1.5 

1 .O 
0.2 1 10 

H 

FIQURE 3. The dimensionless drag coefficient /3 (0) and the constant a (0) for a unit disk 
moving sideways at distance H from each of two parallel walls. 

and hence, for 0 < p < 1, 

But the left-hand side is determined by (4.20) and thus 

1 

after substitution of (4.18). Abel inversion then shows that 

-1 l ] [A(L)r(k) ]dk  B ( k ) A ( k )  (0 < t 5 l),  

and finally substitution for A ,  B from (4.22) yields the following coupled integral 
equations for W(t) ,  X ( t )  : 

3 -;(a + "'1 + 8J' /am [ r+ A ]  sin kt sin k 
= t [  

dk (0 < t  < l),  (4.23) 1-a 37~ r - A  k2 
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where the matrix of functions in the kernels is defined by (4.19) and can be simplified 
to the form 

- 1  
2kH 

Inspection of (4.21) shows that the rim singularities in the pressure are minimized by 
imposing the conditions 

and these ensure a unique solution of (4.23) by determining the dimensionless drag 
coefficient /3 and the other constant a. 

Figure 3 displays computed values of /3 and a obtained as described in the 
Appendix with N = 5 and N = 3 for convergence in the ranges 0.25 < H < 2 and 
H > 2 respectively. For H $ 2, the disk is small compared to its distance from each 
wall and hence the solution is determined, to leading order, by a moving point-force 
singularity. Thus the frictional variation in drag, due to the walls, must to  order H-' 
agree with that calculated by Ganatos, Pfeffer & Weinbaum (1980) for the sphere and 
Liran & Mochan (1976) for the stokeslet translating between parallel walls. 

W(1) = 0 = X(1) 

5. Annular disk moving sideways 
Suppose that a thin rigid annular disk of radii a ,  1 (a < 1)  translates in infinite fluid 

with the same motion as the disk considered in the previous section. Equations 
(4.1)-(4.4) remain valid but the boundary conditions (4.5) are now confined to the 
interval a < p < 1 and the corresponding modification of conditions (4.6), namely 

involves two undetermined constants, a and y. The solution form (4.7) for @ / z  and 
x then implies that (4.8) must be replaced by 

and also, from (4.9), that continuity of stresses a t  z = 0, p > 1 and z = 0, 0 < p < a 
is achieved by imposing the conditions (4.10) and 

Thus there are four constants a, /3, y, S to be determined by requiring both velocity 
components to remain bounded as either rim of the annular disk is approached. 

After rearranging (4.10) and (5.2) in the forms 

(5.3) 
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these equations, together with (5.1), constitute two sets of triple integral equations 
for the unknown functions k(A+B) and k(A-B).  However, for the simplest 
construction of a solution, it is advantageous to proceed otherwise. First u is 
eliminated by considering, as in the previous section, a derivative of (5.1), namely 

But, by analogy with (2.9) and (2.12), this can be satisfied by writing 

F+(t) sin kt dt - G+(t) cos kt dt. (5.4) A + B  1 sink 
'[A-B] = 2[ -&a]T-L'-'[F-(t)l /r[G-(t)l 

So, on substitution in (4.7), the velocity components vz, vy in (4.4) are determined a t  
z = O b y  

k(A +B)  Jo(kp) dk 
i a  --"+xl,~o = - 

2P aP 

(t)l U 
dt --H(p - 1) 

U 
(p2 - t2)2 

= UH( 1 - p )  - -H(a - p )  
R 

(5.5~) 

after suitable manipulations of the identity (4.15). Thus the use of the representation 
(5.4) in terms of continuous, integrable functions t-'F,(t) (0 < t d a )  and G,(t) (t > 1) 
ensures that the velocity components exhibit the required square-root behaviour at 
each rim and it remains to identify three consistency conditions that will determine 
a,  /3 and 8. Because of the switch between Jo and Jz, the second velocity expression 
(5.5b) contains a term that must be eliminated in order to satisfy the disk conditions 
(4.5). Thus 

lF-(t)  dt = 0. (5.6) 

Also, since the limit p+ 00 in (5.3) implies that 

it follows by letting k+O in (5.4) that 
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The stress conditions (5 .3)  now determine the unknown functions. Direct 
substitution of (5.4) yields two pairs of Abel integral equations which can be inverted 
by standard methods. However the algebra is much abbreviated, as in $2,  by 
applying the identities 

a 1-cosku 
au (u2-p2)x , dp=-(  au )=s inku ,  

to the respective stress conditions (5 .3)  to obtain 

Except for the inhomogeneous term, the substitution of (5 .4)  involves the same 
calculation as for (2.14) and (2.15) and hence 

i.e. F+(u), F-(u) satisfy the disjoint integral equations 

with the ratio 6:a chosen so that F-(u) has zero mean value, according to (5.6). 
Determination of the constants is then completed by applying conditions (5.7), which 
in terms of F+ are 

(5.9) 

When the integral equations (5.8) are solved by the method described in the 
Appendix and the constants determined by the conditions (5.6) and (5.9), it is found 
that the variation with a of the dimensionless drag coefficient p is very similar to that 
of D for the same disk moving axisymmetrically. The actual forces in the two cases 
are 32UppI3 and 16UpD. Values of /3 are displayed in figure 4;  01 exceeds p but the 
difference is less than 1 % for a < 0.97. The second curve enables comparison to be 
made with the drag experienced by an open torus that translates along a transverse 
axis and has the same size hole, i.e. radii ratio (1-a)/(l +a). The force 67c,uUf, 
calculated by Goren & O'Neill (1980) is compared with 32UpP/3 by plotting values 
of 9r~fJl6 which, of course, must be larger, for each a, and approach zero as a+ 1. 
However 99/101 is the largest value of a for which f, was computed. 
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FIQURE 4. The dimensionless drag coefficient /3 (0) for the sideways motion of an annular disk of 
radii a and 1 in infinite fluid. Also shown are values of the corresponding coefficient h fJ l6  
computed by Goren & O’Neill (0) for a torus with radii ratio (1-a)/(l+u).  The limit values as 
a+O are 1 and 1.4904 respectively. 

The tangential velocity in the hole, relative to the disk, is given, from (5.5a, b )  with 
use of (5.7), by 

2u 
t 

2 ( 1 , O )  -dt -2 (cos 28, sin 28) 
7r ( t 2 - p ) :  np 

and evidently must have a pair of symmetrically placed point vortices on the y-axis 
(8 = in). 

This work was supported by NSF Grant DMS-8714694. 

Appendix 
The numerical solution of the systems of integral equations, (2.15), (3.9), (4.23) and 

(5.8) was obtained by using El-Gendi’s (1969) method based on the Clenshaw4urtis 
quadrature scheme to express the integral of a typical smooth function g(u) ,  defined 
in (0, l),  in terms of the set [g , ; j  = 0, 1, .. ., 2N)  of approximate values of g(u) at u = 
+[l - cos (jn/UV)] = sin2 (jn/4N). Thus 

where 

T, denotes the mth Chebyshev polynomial and the attachment of double primes to 
a summation symbol indicates that the first and last terms are to be halved. In this 
way, the Fredholm integral equations, (2.15), (3.9), the connected pair (4.23) and the 
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disjoint pair (5 .8) ,  are converted to sets of 2N, 2N+ 1 or 4N simultaneous equations 
for which an IMSL routine is available. 
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